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Section 1. Official Bias 

Official bias is now a well established phenomenon in almost all major sports. 40 years of 
quantitative research into this area has supported common stereotypes that referees tend 
to favor the home team (Nevill and Holder 1999), are adverse to sequential calls against the 
same team (Anderson and Pierce 2009; Noecker and Roback 2012), and in some situations, 
supportive of the underdog (Brymer, Holcomb, and Rodenberg 2015). In addition, referees 
in many sports seem to have an innate tendency to favor the losing team. For example, in 
NCAA basketball, it has been shown that foul calls are more likely to go against the losing 
team (Anderson and Pierce 2009) and in soccer, it has been shown that losing teams are 
more likely to receive penalty kicks (Plessner and Betsch 2001). In baseball, a similar effect 
is also present in strike calling patterns: strike zones tend to increase when the batter is up 
in the count and decrease when the batter is down (Moskowitz and Wertheim 2012; Green 
and Daniels 2014). 

Elite water polo provides a particularly interesting forum for investigating officiating for 
two reasons. First of all, as Figure 1 demonstrates, more than half of all goals in men's 
water polo (and almost half of all goals in women's) result directly from major defensive 
fouls, which can take on one of two forms in the sport 

1. Exclusions in which a player on the defensive team is temporarily suspended for 20 
seconds giving the offense a six on five 'power play' advantage, or 

2. Penalty Shots in which a severe goal-preventing infraction is committed within five 
meters of the goal resulting in a penalty shot at the goal. 

Both exclusions and penalty shots provide the offense with significant advantages and 
hence, any biases in the rates at which they are called could largely impact the outcomes of 
games. 



 

Figure 1. Breakdown of goal generating scenarios and tactics for 176 (97 men, 78 women) 
elite water polo contests from 2012-2015. For more details on the dataset see Section 2. 

A second reason for studying water polo officiating stems from the following paradox first 
pointed out in (Graham and Mayberry 2014): although most goals result from major 
defensive fouls, the winning team rarely gets more such opportunities. Figure 2 shows the 
percentage of games in which the winning team received more scoring opportunities from 
defensive fouls as opposed to games in which the losing team had more opportunities. In 
men's contests, the winning team had more opportunities in only 37% of all contests while 
in women's, they had more opportunities in only 27%. In contrast, (Graham and Mayberry 
2014) showed that if one looks at Exclusion Conversion Rate, defined as the fraction of 
power play opportunities which are converted to goals, the winning team had a higher 
value in almost 90% of all contests, even if we restrict our attention to 'close' games (those 
decided by 3 or fewer goals). These results again highlight the importance of exclusion 
opportunities while also providing evidence of a foul calling bias in favor of losing teams. 

 

Figure 2. Distribution of which team had the most scoring opportunities from defensive fouls 
based on the game outcome. Here tie could mean either that both teams received the same 
number of opportunities or that the game ended in a tie (shootouts excluded). 



(Graham and Mayberry 2016) further studied this phenomenon in elite men's water polo 
on a possession by possession basis. They defined two new statistics: the Defensive Foul 
Rate (DFR), defined as the probability of being awarded an exclusion or penalty shot 
opportunity on a given offensive possession, and the Offensive Foul Rate (OFR), the 
probability of getting called for an offensive foul resulting in a turnover of possession to the 
opposing team. Using hierarchical logistic regression, they studied the impact of various 
game state factors (eg. sign and magnitude of offensive team's lead, sequential fouls, 
scoring momentum) on both the DFR and OFR. In particular, they showed that there is 
statistically significant evidence of losing team bias in water polo officiating with the odds 
of drawing a major defensive foul decreasing by about 27% when the offensive team is 
winning or the game is tied. They also showed that this losing team bias persists even after 
accounting for differences in playing style (i.e.~offensive and defensive tactics), 
game-score (close vs unbalanced games), event (Olympics, World Championships, 
European Championships), team, and game-time. Figure 3 illustrates the overall losing 
team bias in defensive foul calling rates. 

 

Figure 3. Differences in the probabilities of the offensive team drawing a defensive foul (DFR) 
between losing and winning/tied teams. 

What is unclear from (Graham and Mayberry 2016) or other investigations of foul calling 
biases is the extent to which such biases may actually impact the outcome of a game. 
Evaluating the impact of losing team bias in real water polo contests is more challenging 
than validating its existence. It is difficult to isolate the effect of a single foul call on the final 
outcome of a game and predict how the outcome would have changed if a particular foul 
had not been called at a particular time. Instead, we will investigate the impact of losing 
team bias here by generating our own games via random simulation. Although this igrnores 
potential psychological effects on 'game momentum', parallel game simulations will at least 
allow us to assess the objective cost of an additional foul call (or lack of call) on the games' 
final score. 

To explain our approach, imagine a contest between two equally matched elite men's teams 
which we will refer to as 'Dark' and 'White'. In the real world, these two teams would only 
be able to play once, but in the virtual world, we can generate two parallel games which are 



 

identical in all respects except that in Game 1, there is no losing team bias in foul calling 
while in Game 2, the losing team bias is present. By comparing the pattern of goals scored 
by Dark in Game 1 with the pattern of goals scored by Dark in Game 2 (and similarly, 
compare White scoring patterns between the two games), any differences will be goals 
scored (or lost) as a result of losing team bias. 

The rest of this chapter will be organized as follows. In Section 2, we will give a more 
precise description of our simulation process and the data set used for callibrating 
parameters. In Section 3, we will summarize the results of our simulations and the 
estimated cost of losing team bias. Section 4 is dedicated to a more in depth study of the 
symmetric case in which the losing team advantage is the same as the winning team 
disadvantage. In this scenario, we can obtain some explicit formulas based on the use of 
binomial probabilities. Finally, we conclude in Section 5 with some remarks and questions 
for furter investigations. 

Section 2: Model Description and Parameters 

To simulate the cost of referee bias, we generate  coupled pairs of games, one0, 00M = 1 0  
of which incorporates a losing team bias in foul calling and one in which foul calling rates 
are independent of the game-state. The evolution of each game is based on a discrete time 
Markov chain model in which each step represents a change in possession. A possession is 
defined as the period of time from when a particular team takes offensive control of the ball 
until offensive control returns to the opposing team. This possession orieted approach to 
studying water polo was first proposed in (Graham and Mayberry 2014) inspired by a 
similar approach earlier applied to model basketball games (Kubatko et al. 2007). 

The state of the unbiased game during game possession  is a triple  wherek D , , )( k W k Ok  
 tracks the current game score and  tracks who is currently in possession of the,Dk W k Ok  

ball. During each possession, a goal is scored with probability  independent of the currentg  
score. Possession then switches to the opposing team and the process continues for N  
possessions where  is a random variable. The team who gets the ball first is determinedN  
by a fair coin flip. The unbiased game is then ``coupled'' with the biased game in the 
following way: 

• If the offensive team is losing during possession , then a goal is scored in both gamesk  
with probability  and only in the biased game with probability  for someg bℓ  
parameter .bℓ > 0  

• If the offensive team is winning or the game is tied during possession , then a goal isk  
scored in both games with probability  and only in the unbiased game with−bg w  
probability  for some parameter .bw bw > 0  

The parameters  represent the respective boost and reduction in goal scoring rates,bℓ bw  
resulting from losing team bias. 

To determine appropriate values for the parameters  and the distribution of , we, ,g bw bℓ N  
used game data from 68 elite men's water polo games including 23 from the 2012 London 



Olympics (henceforth Oly), 25 from the 2013 World Championships (WC), and 20 from the 
2014 European Chamionships (EC) . This data set included all playoff games from the three 

1

tournaments as well as selected games from the preliminary rounds between competitive 
teams. The teams involved in these games are listed in Table 1 below. Games were filmed 
from mid-court by representatives from Team USA water polo. While camera position 
varied, all twelve players and the defending goalie were kept in frame at all times. The 
recorded tapes were later viewed by the first author or one of his assistants and play by 
play game logs were recorded summarizing the outcomes of all possessions in the contests. 
Information transcribed about the possession included the team on offense, offensive 
tactic(s) employed , any defensive fouls called, rebounds/new clocks, and the ultimate 

2

result of the possession (Goal, Missed Shot, Blocked Shot, Goalie Save, Turnover, or 
Offensive Foul). 

Table 1. Teams involved in our dataset 

Team Number of Games 
AUS 11 
CAN 2 
CHN 3 
CRO 15 
ESP 14 
GER 2 
GRE 13 
HUN 16 
ITA 15 
MNE 14 
ROM 1 
ROU 7 
SRB 15 
USA 8 

1 The figures in Section 1 also included 29 men's games from various 2015 international 
tournaments and world qualifiers, but these were excluded from our model because of 
slight differences in tracking methods and the competitiveness of the events. We also 
excluded women's games from our model because of differences in game play and foul 
calling rates. Building a similar model for women's water polo would be an interesting 
project for future investigations although a complication is that winnings/tied teams tend 
to score non-exclusion goals at a higher rate than losing teams and hence, the model 
assumptions used here would be invalid. 

2 See (Graham and Mayberry 2014) for a further discussion of offensive tactic 
classifications. 



Overall, our data set included 4625 possessions (1556 from Oly, 1766 from WC, and 1303 
from EC). The distribution for the number of possessions per game was roughly symmetric 
(median = 68, mean= 68.9 possessions per game) with 50% of all games having between 65 
and 73 possessions and 90% of all games having between 60 and 76.7 possessions. Figure 
4 shows the distribution of possessions across games and this empirical distribution was 
used to bootstrap sample  in our simulations.N  

 

Figure 4. Distribution of Number of Possessions per Game 

To determine the goal scoring probability  and the losing team bias, we categorizedg  
possessions according to the following four scenarios: 

• : A goal was scored with no foul being calledG  

• : A single penalty shot was granted resulting from a severe goal-preventingP  
infraction. 

• : An exclusion foul was called resulting in a 20 second 6 on 5 power play advantageE  
for the offense. 

• : A change of possession occurred without any of the three above outcomes. ChangeC  
of possession could mean a turnover, blocked shot, saved shot, missed shot, offensive 
foul, or shot clock violation. 

Table 2 summarizes the fraction of each possession ending in each outcome broken down 
by the offensive state at the start of the possesion(offensive team losing or winning/tied). 

Table 2. Percentage of possessions ending in each of the four possible outcomes G,P,E,C based 
on the starting state of the posession with respect to the offensive team (L = Offensive team 
losing, W/T = Offensive team winning or tied) 

Offense Count G P E C 
L 1888 0.106 0.018 0.326 0.550 
W/T 2800 0.109 0.019 0.257 0.615 
Overall 4688 0.108 0.019 0.285 0.589 



 

We estimate the probability  of scoring a goal in a given possession by taking a weightedg  
average of the three outcomes which could result in a goal: 

E Pg = GO + ε O + ρ O  

where  are the overall fractions of possessions resulting in  and  are, ,GO EO PO , ,G E P ,ε ρ  
the exclusion and penalty conversion rates, respectively. Estimates of  and  from ourε ρ  
database are provided in Table 3 below. Finally, we estimate the foul calling biases by 

where  and  are the probabilities of drawing an exclusion when the offensive teamEWT Eℓ  
is winning/tied or losing respectively. Since the goal scoring and penalty shot rates did not 
differ significantly between losing and winning/tied teams, we leave these factors identical 
in the biased and unbiased games. Therefore, the winning and losing team goal scoring 
biases depend only on differences in exclusion calling rates between the two scenarios. 

Table 3. Defensive Foul Statistics including mean number of fouls per game (Mean), 
conversion rates (CR), and margin of error in conversion rate estimates at a 95% confidence 
level (ME) 

Type Mean CR ME 
Exclusion 20.7 0.46 0.03 
Penalty Shot 1.3 0.75 0.11 

Section 3: Simulation Results 

We employ two metrics to quantify the impact of losing team bias in our simulations: 

1. Difference in goals scores, defined as the difference between the total number of goals 
scored in the biased game and the total number of goals scored in the unbiased games. 

2. Alteration of Final Outcome, defined as a binary variable which takes on the value of 1 
if the outcome of the biased game differed from the outcome of the unbiased game. 
This includes situations in which one game was tied and the other yielded a clear 
victory for one team. 

We illustrate the computation of these metrics in Figure 5 below which shows one coupled 
simulation of a single game between teams Dark and White. Comparing Dark 1 (the goals 
scored by team Dark in the unbiased game) with Dark 2 (goals scored by Dark in the biased 
game), we can see that there are no differences until Possession 27. At this point, the Dark 
team is leading in both games, but due to the presence of losing team bias in Game 2, they 
score a goal in Game 1 and not in Game 2. During Possession 41, the Dark team is hurt 
again in Game 2 when the game is tied. In contrast, the White team scores lie on the same 
trajectory until Possession 66. At this point, the White team is leading in Game 2 and is then 
hurt by a losing team bias. So to summarize the impact of losing team bias in this game, we 
can say that it cost the Dark team two goals and cost the White team 1, changing the game 
outcome from a 13-12 win for Dark to an 11-11 tie. In terms of our metrics, the difference 
in goals scored was 3 and the alteration of final outcome was 1. 



 

Figure 5. Sample of a coupled game simulation demonstrating the difference between the 
biased (Dark 2 vs White 2) and unbiased (Dark 1 vs White 1) games. 

Figure 6 shows the distribution of the difference in goals scored across all 10,000 simulated 
games. On average, losing team bias did not affect the total number of goals scored and 
approximately 48% of all simulations ended with no difference between the two games. 
Another 42% of all games ended with a total goal difference of 1, however, the symmetry of 
the distribution implies that the total number of goals was just as likely to be higher in the 
biased games as in the unbiased games. There were a few outliers (like the game shown in 
Figure 5) in which the total number of goals in the two games differed by as much as three. 

 In 
contrast to Figure 6, Figure 7 shows the impact of losing team bias on game outcome in our 
database. Overall, about 14% of all game outcomes were altered by the presence of losing 
team bias. The most common alteration was from a clear victory for one team in the 
unbiased game to a tie in the biased game. Only 1.3% of all alterations actually switched the 
winner of the game from Dark to White (or vica-versa). 



 

 

Figure 7. Distribution of game alterations. 

Section 4: Symmetric Bias Approximation 

To demonstrate the sensitivity of our simulation results to parameter selection, we include 
a discussion of how the fraction  of all games altered changes as a function of the amountf  
of bias present in a game. For simplicity, we restrict our attention to the the symmetric case 
where the boost in foul calling biases for the losing team is equal to the reduction in foul 
calling rates for winning/tied teams. Figure 8 shows the results of 10000 simulated games 
at various foul calling biases ranging from 0.005 to 0.1. From Table 2, we can see that the 
foul calling bias in men's water polo is not quite symmetric: losing teams get a boost in 
exclusion calling rates of around 0.041 per possession while winning/tied teams get a 
reduction of only 0.028. Nevertheless, using a symmetric bias of between 0.03 and 0.04 
provides a rough approximation to this scenario. 

 

Figure 8. Comparison of symmetric bias with theoretical approximations. 

Figure 8 shows the results of these simulations. When the foul calling bias is small, the 
shape of this curve can be explained by direct computation. During each possession, the 



probability of a goal being scored in one game but not the other is . Therefore,bw = bℓ = b  
the probability of at least one extra goal being scored in the biased game is 

−(1−b)1 n  

Of course, this is not enough to actually change the outcome of a game, but when  is small,b  
the probability of more than one extra goal being scored is relatively small and hence, most 
game altering situations will fall into one of the following two categories: 

1. The unbiased games ends in a tie, but one team scores at least one extra goal in the 
biased game. 

2. The unbiased game score differential is 1, but the losing team scores at least one extra 
goal in the biased game. 

Since goal scoring events are independent, the final scores in the unbiased game can be 
approximated by independent Binomial random variables  and , each withD W  
approximately  trials and success probability  where  is the mean number of/2ν g ν  
possessions per game. Therefore the probability of scenario 1 above is approximately 

(D ) 1−(1−b) )P = W × ( ν  

and the probability of 2 is 

(|D−W | ) 1−(1−b) )P = 1 × ( ν/2  

Therefore, we can approximate the fraction  of altered games as(b)f  

(b) (D ) 1−(1−b) ) (|D−W | ) 1−(1−b) ).f ≈ P = W × ( ν + P = 1 × ( ν/2  

 can be computed from the data (see Section 2 and Figure 4) while from standardν  
formulas for Binomial probabilities, we can easily compute 

(D )  P = W = ∑
ν/2

j=0
(1−g)[( j

ν/2) gj ν/2−j]2
 

and 

(|D−W | ) (1−g)  P = 1 = ∑
ν/2

j=0
( j

ν/2) gj ν/2−j × (1−g) (1−g)[( ν/2
j−1) gj−1 ν/2−j+1 + ( ν/2

j+1) gj+1 ν/2−j−1]  

The resulting approximation is shown in Figure 8 along with the simulated values and we 
see it provides a good approximation for foul calling biases of  or smaller which.050  
contains the case of international men's water polo . For larger , the approximation isb  

3

invalid because it ignores the now relevant percentage of all games which differ by more 

3 In international women's water polo, the foul calling bias is smaller ranging from a 0.03 
boost for losing teams to a 0.02 reduction for winning/tied teams. 



 

than one goal in the unbiased scenario as well as the games in which both teams could have 
received multiple offsetting calls in the biased game. 

Section 5: Discussion 

Parallel game simulations provide a novel approach for investigating the impact of foul 
calling biases. By running a game twice, once with and once without a particular type of 
bias, we can isolate the impact of this factor on the evolution of the game. Here, we focus on 
losing team bias, the established fact that a losing team in water polo has a better chance of 
getting a foul call in their favor than the winning team. Our simulations suggest that the 
presence of this bias will alter the total number of goals scored in about half of all games 
between typical, equally matched elite teams and could be altering the outcome in about 
14% of all such games. A small fraction (just over 1%) of these alterations actually 
switched the winner of the contest, but the most common alteration was switching from a 
clear victory for one team in the independent game to a tie in the biased game. This means 
that the main effect of losing team bias is producing more overtime games than there 
should be. We also were able to examine the dependence of the fraction of games altered 
on the size of the losing team bias which may help understand the impact in leagues where 
the amount of bias is stronger (or less strong) than in elite men's water polo. 

One improvement which could be made to our simulations is in the method by which game 
length was determined. We determined game length at the start of a simulation by 
randomly sampling a value from the empirical distribution of possessions and then running 
the game. But in reality, the number of possessions is also impacted by the number of 
exclusion fouls called since such fouls add to the length of a possession. A more robust 
model would be to give a fixed game time and allow possession lengths to vary according to 
a random variable with additional time added after each called exclusion. Unfortunately, 
our data set does not provide information on the length of possessions so we were unable 
to compare how this alteration would impact our results. Another improvement which 
could be made to our simulations is the inclusion of other factors which have been shown 
to affect foul calling rates such as sequential foul call biasing. 

In (Graham and Mayberry 2016), it is shown that losing team bias is present more strongly 
in close games than blowouts and persists across different offensive and defensive tactical 
choices. Here, we also show that the direct goal scoring rates for losing and winning teams 
are similar (see Table 2) and that the differences in foul calling rates feed into differences 
in turnover rates. Together, these investigations suggest that it is referees, and not teams, 
who provide the primary source of losing team bias in the sport. These observations are 
consistent with an old adage that referees prefer to be 'fair' (giving equal opportunities to 
both teams) as opposed to being 'objective' (calling fouls based on severity of infractions 
alone) (Askins 1978). With the help of parallel simulations, we have provided evidence that 
this principle is affecting a significant fraction of games and generating more excitement 
(or anxiety) than their should be in elite international water polo. 
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